Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells

نویسندگان

  • Yebo Wang
  • Yingjia Wang
  • Tammy Chang
  • He Huang
  • Jiing-Kuan Yee
چکیده

Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors

Biased integration remains a key challenge for gene therapy based on lentiviral vector technologies. Engineering of next-generation lentiviral vectors targeting safe genomic harbors for insertion is therefore of high relevance. In a previous paper (Cai et al., 2014a), we showed the use of integrase-defective lentiviral vectors (IDLVs) as carriers of complete gene repair kits consisting of zinc-...

متن کامل

Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair

CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficien...

متن کامل

Expression of Recombinant Alpha-1 Antitrypsin in CHO and COS-7 Cell Lines Using Lentiviral Vector

In this study, in order to facilitate and accelerate the production of eukaryotic protein alpha 1-antitrypsin (AAT) with correct post-translational modifications, a protein production system based on the transduction of CHO and COS-7 cells using lentiviral vectors was developed. Human AAT cDNA was cloned into a replication-defective lentiviral vector. The transgene AAT-Jred chimer was transferr...

متن کامل

Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase

Homology directed repair (HDR)-based genome editing via selectable long flanking arm donors can be hampered by local transgene silencing at transcriptionally silent loci. Here, we report efficient bi-allelic modification of a silent locus in patient-derived hiPSC by using Cas9 nickase and a silencing-resistant donor construct that contains an excisable selection/counter-selection cassette. To i...

متن کامل

Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9

Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017